The objective of this paper is to find the exact solution of the fractional electromagnetic (EM) equation within an atmospheric duct (dielectric medium) of the transient EM field caused by a vertical magnetic dipole and discuss the results in both fractional D-dimensional space and integer space. The novelty of this work is the exact solution of the fractional EM equation in terms of Bessel and Mittage-Leffler functions based on Caputo fractional derivative order α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha$$\\end{document} and the Laplacian operator in D -dimensional fractional space. Using the separation of variables method, the resulting magnetic field can be controlled by D=α1+α2+α3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$D=\\alpha _1+\\alpha _2+\\alpha _3$$\\end{document} and alpha as spatial and time fractional parameters, respectively. The transient magnetic field behaviour inside the duct is plotted through some of figures depending on fractional parameters D and α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha$$\\end{document}. The classical integer results in usual space are recovered from fractional solution at D=α=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$D=\\alpha =1$$\\end{document}. The main results highlighted are that spatial frequencies grow at a faster rate during EM wave propagation; thus, the amplitude of the propagated wave in integer space is greater than that in fractional space. Increasing the fractional parameters D and α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha$$\\end{document} simultaneously increases the amplitude of the EM wave and can be used to control the power and energy of the EM wave.