A fractional-order controller will be proposed to regulate the inlet oxygen into the heart-lung machine. An analytical approach will be explained to satisfy some requirements together with practical implementation of some restrictions for the first time. Primarily a nonlinear single-input single-output (SISO) time-delay model which was obtained previously in the literature is introduced for the oxygen generation process in the heart-lung machine system and we will complete it by adding some new states to control it. Thereafter, the system is linearized using the state feedback linearization approach to find a third-order time-delay dynamics. Consequently classical <i >PID</i> and fractional order <svg style="vertical-align:-0.0pt;width:44.724998px;" id="M1" height="13.6875" version="1.1" viewBox="0 0 44.724998 13.6875" width="44.724998" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,13.6875)"> <g transform="translate(72,-61.05)"> <text transform="matrix(1,0,0,-1,-71.95,61.1)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝑃</tspan> <tspan style="font-size: 12.50px; " x="7.4267821" y="0">𝐼</tspan> </text> <text transform="matrix(1,0,0,-1,-57.4,66.1)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝜆</tspan> </text> <text transform="matrix(1,0,0,-1,-52.16,61.1)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐷</tspan> </text> <text transform="matrix(1,0,0,-1,-42.1,66.1)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝜇</tspan> </text> </g> </g> </svg> controllers are gained to assess the quality of the proposed technique. A set of optimal parameters of those controllers are achieved through the genetic algorithm optimization procedure through minimizing a cost function. Our design method focuses on minimizing some famous performance criterions such as IAE, ISE, and ITSE. In the genetic algorithm, the controller parameters are chosen as a random population. The best relevant values are achieved by reducing the cost function. A time-domain simulation signifies the performance of <svg style="vertical-align:-0.0pt;width:44.724998px;" id="M2" height="13.6875" version="1.1" viewBox="0 0 44.724998 13.6875" width="44.724998" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,13.6875)"> <g transform="translate(72,-61.05)"> <text transform="matrix(1,0,0,-1,-71.95,61.1)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝑃</tspan> <tspan style="font-size: 12.50px; " x="7.4267821" y="0">𝐼</tspan> </text> <text transform="matrix(1,0,0,-1,-57.4,66.1)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝜆</tspan> </text> <text transform="matrix(1,0,0,-1,-52.16,61.1)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐷</tspan> </text> <text transform="matrix(1,0,0,-1,-42.1,66.1)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝜇</tspan> </text> </g> </g> </svg> controller with respect to a traditional optimized <i >PID</i> controller.
Read full abstract