To clarify the micropore structure and fractal characteristics of the Danning–Jixian block on the eastern margin of the Ordos Basin, this study focuses on the deep coal rock of the Benxi Formation in that area. On the basis of an analysis of coal quality and physical properties, qualitative and quantitative studies of pore structures with different pore diameters were conducted via techniques such as field emission scanning electron microscopy (FE-SEM), low-pressure CO2 adsorption (LP-CO2A), low-temperature N2 adsorption (LT-N2A), and high-pressure mercury intrusion (HPMI). By applying fractal theory and integrating the results from the LP-CO2A, LT-N2A, and HPMI experiments, the fractal dimensions of pores with different diameters were obtained to characterize the complexity and heterogeneity of the pore structures of the coal samples. The results indicate that the deep coal reservoirs in the Danning–Jixian block have abundant nanometer-scale organic matter gas pores, tissue pores, and a small number of intergranular pores, showing strong heterogeneity influenced by the microscopic components and forms of distribution of organic matter. The pore structure of the Benxi Formation exhibits significant cross-scale effects and strong heterogeneity and is predominantly composed of micropores that account for more than 90% of the total pore volume; the pore structure is affected mainly by the degree of coalification, the vitrinite group, and the ash yield. Fractal analysis reveals that the heterogeneity of macropores is greater than that of mesopores and micropores. This may be attributed to the smaller pore sizes and concentrated distributions of micropores, which are less influenced by diagenesis, resulting in simpler pore structures with lower fractal dimensions. In contrast, mesopores and macropores, with larger diameters and broader distributions, exhibit diverse origins and are more affected by diagenesis, reflecting strong heterogeneity. The abundant storage space and strong self-similarity of micropores in deep coal facilitate the occurrence, flow, and extraction of deep coalbed methane.
Read full abstract