Product design is a multidisciplinary activity that requires the integration of concurrent engineering approaches into a design process that secures competitive advantages in product quality. In concurrent engineering, the Taguchi method has demonstrated an efficient design approach for product quality improvement. However, the Taguchi method intuitively uses parameters and levels in measuring the optimum combination of design parameter values, which might not guarantee that the final solution is the most optimal. This work proposes an integrated procedure that involves neural network training and genetic algorithm simulation within the Taguchi quality design process to aid in searching for the optimum solution with more precise design parameter values for improving the product development. The concept of fractals in computer graphics is also considered in the generation of product form alternatives to demonstrate its application in product design. The stages in the general approach of the proposed procedures include: (1) use of the Taguchi experimental design procedure, (2) analysis of the neural network and genetic algorithm process, and (3) generation of design alternatives. An electric fan design is used as an example to describe the development and explore the applicability of the proposed procedures. The results indicate that the proposed procedures could enhance the efficiency of product design efforts by approximately 7.8%. It is also expected that the proposed design procedure will provide designers with a more effective approach to product development.
Read full abstract