The primary purpose of this article is to use the laws of thermodynamics, mainly the second and fourth laws, to evaluate three energy technologies of the future: fusion, solar, and fission. Among the criteria used to evaluate them, the most important are the amount of matter needed to sustain the technology itself and the environmental impact. Much emphasis is placed here on the fourth law of thermodynamics, which introduces the concept of material entropy. Zemansky–Georgescu-Roegen’s Law of Inevitable Dissipation of Useful Concentrated Matter states that, in the economic process, some matter is inevitably degraded and becomes unavailable matter. This has tremendous implications for humanity as a whole since the Earth is thermodynamically a closed system, meaning that it cannot exchange matter with space but is open to the flow of solar energy. This results in the need to conserve matter and natural resources. This law can be used as an important criterion for the selection of energy technology. Moreover, the flow–fund model, which was proposed by Georgescu-Roegen, was used to assess the viability of energy technologies. The final conclusion is that there is no Promethean technology of the third kind yet, but the closest to meeting this condition is solar technology. Technology based on nuclear fission has been rejected due to its adverse ecological effects, while fusion technology has proven to be less useful due to the matter criterion, the negative environmental impact, since radioactive waste only becomes safe for humans after 500 years, and the risks associated with nuclear proliferation. Solar technology can become Prometheus III only after all of humanity is involved with this project, which requires profound social changes, widespread demilitarization, and the development of organic agriculture. This implies the necessity of the emergence of a global solar society based on an economic system called solar communism.