Abstract

Self-organization is a process where order of a whole system arises out of local interactions between small components of a system. Emergy, spelled with an ‘m’, defined as the amount of (solar) energy used to make a product or service, is becoming an important ecological indicator. The Maximum Empower Principle (MEP) was proposed as the fourth law of thermodynamics by the ecologist Odum in the90′s to explain observed self-organization of energy driven systems. But this principle suffers a lack of mathematical formulation due to an insufficiency of details about the underlying computation of empower (i.e. emergy per time). For empower computation in steady-state an axiomatic basis has been developed recently by Le Corre and the second author of this paper. In this axiomatic basis emergy is defined as a recursive max-plus linear function. Using this axiomatic basis and a correspondence between ecological theory and dynamic systems theory, we prove the MEP. In particular, we show that the empower computation in steady-state is equivalent to a combinatorial optimization problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.