Legacy Fourier transform (FT) mass spectrometers provide robust platforms for bioanalytical mass spectrometry (MS) yet lack the most modern performance capabilities. For many laboratories, the routine investment in next generation instrumentation is cost prohibitive. Field-based upgrades provide a direct path to extend the usable lifespan of MS platforms which may be considered antiquated based on performance specifications at the time of manufacture. Here we demonstrate and evaluate the performance of a hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer that has been enhanced via an external high-performance data acquisition and processing system to provide true absorption mode FT processing during an experimental acquisition. For the application to mass spectrometry imaging, several performance metrics have been improved including mass resolving power, mass accuracy, and dynamic range to provide an FTMS system comparable to current platforms. We also demonstrate, perhaps, the unexpected ability of these legacy platforms to detect usable time-domain signals up to 5 s in duration to achieve a mass resolving power 8× higher than the original platform specification.