The design and chemical synthesis of de novo metalloproteins on cellulose membranes with the structure of an antiparallel four-helix bundle is described. All possible combinations of three different sets of amphiphilic helices were assembled on cyclic peptide templates which were bound by a cleavable linker to the cellulose. In the hydrophobic interior, the four-helix bundle proteins carry a cysteine and several histidines at various positions for copper ligation. This approach was used successfully to synthesize, for the first time, copper proteins based on a four-helix bundle. UV-vis spectra monitored on the solid support showed ligation of copper(II) by about one-third out of the 96 synthesized proteins and tetrahedral complexes of cobalt(II) by most of these proteins. Three of the most stable copper-binding proteins were synthesized in solution and their structural properties analyzed by spectroscopic methods. Circular dichroism, one-dimensional NMR, and size-exclusion chromatography indicate a folding into a compact state containing a high degree of secondary structure with a reasonably ordered hydrophobic core. They displayed UV-vis absorption, resonance Raman, and EPR spectra intermediate between those of type 1 and type 2 copper centers. The present approach provides a sound basis for further optimizing the copper binding and its functional properties by using combinatorial protein chemistry guided by rational principles.
Read full abstract