In order to meet the real-time requirements of the autonomous driving system, the existing method directly up-samples the encoder’s output feature map to pixel-wise prediction, thus neglecting the importance of the decoder for the prediction of detail features. In order to solve this problem, this paper proposes a general lane detection framework based on object feature distillation. Firstly, a decoder with strong feature prediction ability is added to the network using direct up-sampling method. Then, in the network training stage, the prediction results generated by the decoder are regarded as soft targets through knowledge distillation technology, so that the directly up-samples branch can learn more detailed lane information and have a strong feature prediction ability for the decoder. Finally, in the stage of network inference, we only need to use the direct up-sampling branch instead of the forward calculation of the decoder, so compared with the existing model, it can improve the lane detection performance without additional cost. In order to verify the effectiveness of this framework, it is applied to many mainstream lane segmentation methods such as SCNN, DeepLabv1, ResNet, etc. Experimental results show that, under the condition of no additional complexity, the proposed method can obtain higher F1Measure on CuLane dataset.