A twistor lift of a space-like or time-like surface in a neutral hyperKähler 4-manifold with zero mean curvature vector is given by a (para)holomorphic function, which yields (para)holomorphicity of the Gauss maps of space-like or time-like surfaces in E24 with zero mean curvature vector. For a space-like or time-like surface in an oriented neutral 4-manifold with zero mean curvature vector such that both twistor lifts belong to the kernel of the curvature tensor, its (para)complex quartic differential is holomorphic. If both twistor lifts of a time-like surface with zero mean curvature vector have light-like or zero covariant derivatives, then either the shape operator with respect to a light-like normal vector field vanishes or all the shape operators of the surface are light-like or zero. Examples with the former (resp. latter) property are given by the conformal Gauss maps of time-like surfaces of Willmore type with zero paraholomorphic quartic differential (resp. time-like surfaces in 4-dimensional neutral space forms based on the Gauss-Codazzi-Ricci equations).