Abstract

We define a new geometric flow, which we shall call the K-flow, on 3-dimensional Riemannian manifolds; and study the behavior of Thurston’s model geometries under this flow both analytically and numerically. As an example, we show that an initially arbitrarily deformed homogeneous 3-sphere flows into a round 3-sphere and shrinks to a point in the unnormalized flow; or stays as a round 3-sphere in the volume normalized flow. The K-flow equation arises as the gradient flow of a specific purely quadratic action functional that has appeared as the quadratic part of New Massive Gravity in physics; and a decade earlier in the mathematics literature, as a new variational characterization of three-dimensional space forms. We show the short-time existence of the K-flow using a DeTurck-type argument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.