Abstract

We discuss the measure-theoretic metric invariants extent, mean distance and symmetry ratio and their relation to the concept of negative type of a metric space. A conjecture stating that a compact Riemannian manifold with symmetry ratio 1 must be a round sphere was put forward by the author in 2004. We resolve this conjecture in the class of Riemannian symmetric spaces by showing that a Riemannian manifold with symmetry ratio 1 must be of negative type and that the only compact Riemannian symmetric spaces of negative type are the round spheres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.