As important biocatalysts, nitrilases can efficiently convert nitrile groups into acids and ammonia in a mild and eco-friendly manner, being widely used in the synthesis of important pharmaceutical intermediates. Early studies reported that nitrilases only had the hydrolysis activity of catalyzing the formation of corresponding carboxylic acid products from nitriles, showing catalytic specificity. However, recent studies have shown that some nitrilases exhibit the hydration activity for catalyzing the formation of amides from nitriles, showing catalytic promiscuity. The catalytic promiscuity of nitrilases has dual effects. On the one hand, the presence of amide by-products increases the difficulties and costs of subsequent separation and purification of carboxylic acid products. On the other hand, however, if the catalytic reaction pathways of nitrilases can be precisely regulated to reshape enzyme functions, the reactions catalyzed by nitrilases can be broadened to provide new ideas for the biosynthesis of high-value amides, which is crucial for the development of artificial enzymes and biocatalysis. This review summarized the research progress in the catalytic promiscuity of nitrilases and discussed the key regulatory factors that may affect the catalytic promiscuity of nitrilases from the evolutionary origin, catalytic domains, and catalytic mechanisms, hoping to provide reference and inspiration for the application of nitrilases in biocatalysis.
Read full abstract