Abstract

In this study, inexpensive earth-abundant catalyst of Co/TiO2 is coupled with a low-temperature modification approach to enhance NH3 adsorption capacity on wheat straw (WS). The highest NH3 uptake achieved is 111.9 mg/g, with 80.8 % retention even after 3 h of desorption. Mechanistic investigation indicates that the enhanced adsorption capacity stems from Co/TiO2, which facilitates generation of reactive oxygen species, leading improved ultra-micropore structure that enhances the interaction between NH3 and oxygen-containing functional groups through a trapping effect. The robust stability of adsorbed NH3 is attributed to the formation of amides or amines. Incorporation of only 1 wt% WS-Co to urea-fertilized alkaline soil reduced NH3 volatilization by 83.1 %. The significant effect is primarily attributed to the excellent adsorption capacity of WS-Co, rather than alterations in the relative abundance of the microbial community. These findings present a novel approach for development of effective fertiliser additive to mitigate NH3 volatilization from alkaline soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.