Tree species are important factors affecting the carbon sequestration capacity of forests and maintaining the stability of ecosystems, but trees are widely distributed spatially and located in complex environments, and there is a lack of large-scale regional tree species classification models for remote sensing imagery. Therefore, many studies aim to solve this problem by combining multivariate remote sensing data and proposing a machine learning model for forest tree species classification. However, satellite-based laser systems find it difficult to meet the needs of regional forest species classification characters, due to their unique footprint sampling method, and SAR data limit the accuracy of species classification, due to the problem of information blending in backscatter coefficients. In this work, we combined Sentinel-1 and Sentinel-2 data to construct a machine learning tree classification model based on optical features, vegetation spectral features, and PolSAR polarization observation features, and propose a forest tree classification feature selection method featuring the Hilbert–Huang transform for the problem of mixed information on the surface of SAR data. The PSO-RF method was used to classify forest species, including four temperate broadleaf forests, namely, aspen (Populus L.), maple (Acer), peach tree (Prunus persica), and apricot tree (Prunus armeniaca L.), and two coniferous forests, namely, Chinese pine (Pinus tabuliformis Carrière) and Mongolian pine (Pinus sylvestris var. mongolica Litv.). In this study, some experiments were conducted using two Sentinel-1 images, four Sentinel-2 images, and 550 measured forest survey sample data points pertaining to the forested area of Fuxin District, Liaoning Province, China. The results show that the fusion model constructed in this study has high accuracy, with a Kappa coefficient of 0.94 and an overall classification accuracy of 95.1%. In addition, this study shows that PolSAR data can play an important role in forest tree species classification. In addition, by applying the Hilbert–Huang transform to PolSAR data, other feature information that interferes with the perceived vertical structure of forests can be suppressed to a certain extent, and its role in the classification of forest species, combined with PolSAR, should not be ignored.
Read full abstract