Quantifying forest carbon storage to better manage climate change and its effects requires accurate estimation of forest structural parameters such as canopy height. Variables from remote sensing data and machine learning models are tools that are being increasingly used for this purpose. This study modeled the canopy height of forest–savanna mosaics in the Sudano–Guinean zone of Togo. Relative heights were extracted from GEDI and ICESat-2 products, which were combined with optical, radar, and topographic variables for canopy height modeling. We tested four methods: Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Deep Neural Network (DNN). The RF algorithm obtained the best predictions using 98% relative height (RH98). The best-performing result was obtained from variables extracted from GEDI data (r = 0.84; RMSE = 4.15 m; MAE = 2.36 m) and compared to ICESat-2 (r = 0.65; RMSE = 5.10 m; MAE = 3.80 m). Models that were developed during this study can be applied over large areas in forest–savanna mosaics, enhancing forest dynamics monitoring in line with REDD+ objectives. This study provides valuable insights for future spaceborne LiDAR and other remote sensing data applications in similar complex ecosystems and offers local decision-makers a robust tool for forest management.
Read full abstract