Abstract

Forest burned area (FBA) detection using remote sensing (RS) data is critical for timely forest management and recovery attempts after wildfires. This study introduces a dual-path attention residual-based U-Net (DPAttResU-Net), a novel end-to-end deep learning (DL) model tailored for FBA detection using dual-source post-fire Sentinel-1 (S1) and Sentinel-2 (S2) satellite RS imagery. To better distinguish FBAs from other land cover types, DPAttResU-Net incorporates a dual-pathway structure to exploit complementary geometrical/physical and spectral features from S1 and S2, respectively. An integral component in the proposed architecture is the channel-spatial attention residual (CSAttRes) block, which emphasizes salient features through the channel and spatial attention modules, thus improving the burned area feature representation. To compare DPAttResU-Net to state-of-the-art DL models, experiments were conducted on benchmark FBA datasets collected over 12 areas, where ten datasets were used as training data and two datasets were used to test the trained DL models. The experimental results demonstrate the high proficiency of the proposed deep model in meticulously delineating FBAs. In further detail, DPAttResU-Net, with a PFN of 17.96 (%) in the first case and an IoU of 89.31 (%) in the second case, outperformed the existing U-Net-based models. Accordingly, through dual-path integration and attention mechanisms, DPAttResU-Net contributes to accurately identifying FBAs by preserving their geometrical details, making it a promising tool for post-wildfire forest management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.