Abstract
Ocean eddies are a common occurrence in ocean water circulation. They have an enormous impact on the marine ecosystem. One of the most active study topics in physical oceanography is ocean eddy detection. Although using deep learning algorithms to detect eddies is a recent trend, it is still in its infancy. In this paper, an attention mechanism-based ocean eddy detection approach using deep learning is proposed. Attention mechanism has spatial and channel attention modules that are cascaded to convolution blocks-based encoder model to simulate spatial and channel semantic interdependencies. In the spatial attention module, the feature at each point is aggregated selectively by the sum of the features at all positions. The channel attention module aggregates related data from all channel maps to selectively highlight interdependent channel maps. The original feature map and the feature map obtained through the attention mechanism are appended to enhance the feature representation further, resulting in more accurate segmentation results. The findings of the experiments show that adopting an attention-based deep framework improves eddy recognition accuracy significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.