This work contains the preliminary results of research into the technical quality of the wood from Scots pine trees of diverse genetic origin, grown on an experimental plot at the Forest Experimental Station in Rogów. The following are the parent stands, numbered: 5 (the Tucholskie Forest 130 m a.s.l.), 7 (the Napiwodzko–Ramuckie Forest 145 m a.s.l.), 10 (the Piska Forest 145 m a.s.l.), 12 (the Biała Forest 95 m a.s.l.), 13 (the Namysłowsko–Ostrzeszowskie Forest 190 m a.s.l.), 15 (the Knyszyńska Forest 165 m a.s.l.), and 16 (the Nowotarskie Forest 590 m a.s.l.). The tested wood was obtained in 2018 from trees aged 52 years. The research material came from 100 trees in total. After felling, two logs approximately 0.5 m in length were cut from each tree. The height on the tree from which the material was taken ranged from breast height (1.3 m) to approximately 2.5 m. Next, planks were cut from the logs in a north–south direction; these were precisely described and then left to season. The work included the measurement and statistical analysis of one physical property, wood density (kg/m3), and of the following mechanical properties: compressive strength along the fibres, Rc12 (MPa); static bending strength, Rg12 (MPa); modulus of elasticity under static bending, Eg12 (MPa); and indices of strength quality of the tested mechanical properties, JRc12, JRg12, and JEg12 (km). The origin of the logs was shown to have a significant influence on wood density, compressive strength, static bending strength, and modulus of elasticity under static bending. The highest mean density was found for trees originating from stand 10 (537 kg/m3). The highest values of compressive strength were obtained for trees originating from stands 5 (45 MPa), and the highest static bending strength and modulus of elasticity under static bending were obtained for trees originating from stand 12 (102 and 9825 MPa, respectively).
Read full abstract