Virial and energy dissipation, related to oscillation observable responses, possess complementary information regarding acoustic force measurements. In this paper, we introduce a mathematical framework describing the analytic relationship between oscillation observables and energy quantities at the second eigenmode in the measurement of dynamic acoustic forces. We utilize a bimodal-frequency excitation scheme for actuation of the micro-cantilever array to obtain high-sensitivity frequency bands. Herein, we analyze the virials of acoustic force interaction and the energy dissipation levels on the domain of acoustic force frequency. For our case, we obtain the high-frequency bands of around 200-270 kHz and 440-570 kHz for the force strengths in the range of 4.0-36.0 pN. In addition, results of virials and dissipated power with respect to acoustic force strengths are introduced for low- and high-sensitivity frequency regions. Therefore, the energy quantities can be robustly utilized to determine high-sensitivity frequency windows in the measurement of dynamic acoustic forces.