The escalation of global change has resulted in heightened frequencies and intensities of environmental fluctuations within coral reef ecosystems. Corals originating from marginal reefs have potentially enhanced their adaptive capabilities in response to these environmental variations through processes of local adaptation. However, the intricate mechanisms driving this phenomenon remain a subject of limited investigation. This study aimed to investigate how corals in Luhuitou reef, a representative relatively high-latitude reef in China, adapt to seasonal fluctuations in seawater temperature and light availability. We conducted a 190-day plantation experiment with the widespread species, Galaxea fascicularis, in Luhuitou local, and from Meiji reef, a typical offshore tropical reef, to Luhuitou as comparison. Drawing upon insights from physiological adaptations, we focused on fatty acid (FA) profiles to unravel the trophic strategies of G. fascicularis to cope with environmental fluctuations from two origins. Our main findings are threefold: 1) Native corals exhibited a stronger physiological resilience compared to those transplanted from Meiji. 2) Corals from both origins consumed large quantities of energy reserves in winter, during which FA profiles of local corals altered, while the change of FA profiles of corals from Meiji was probably due to the excessive consumption of saturated fatty acid (SFA). 3) The better resilience of native corals is related to high levels of functional polyunsaturated fatty acid (PUFA), while insufficient nutrient reserves, possibly due to weak heterotrophic ability, result in the obstruction of the synthesis pathway of PUFA for corals from Meiji, leading to their intolerance to environmental changes. Consequently, we suggest that the tolerance of G. fascicularis to environmental fluctuations is determined by their local adapted trophic strategies. Furthermore, our findings underscore the notion that the rapid adaptation of relatively high-latitude corals to seasonal environmental fluctuations might not be readily attainable for their tropical counterparts within a brief timeframe.
Read full abstract