As the need for food authenticity verification increases, sensory evaluation of food odors has become widely recognized. This study presents a theory based on electroencephalography (EEG) to create an Olfactory Perception Dimensional Space (EEG-OPDS), using feature engineering and ensemble learning to establish material and emotional spaces based on odor perception and pleasure. The study examines the intrinsic connection between these two spaces and explores the mechanisms of integration and differentiation in constructing the OPDS. This method effectively visualizes various types of food odors while identifying their perceptual intensity and pleasantness. The average classification accuracy for odor recognition in an eight-category experiment is 96.1%. Conversely, the average classification accuracy for sensory pleasantness recognition in a two-category experiment is 98.8%. The theoretical approach proposed in this study, based on olfactory EEG signals to construct an OPDS, captures the subtle perceptual differences and individualized pleasantness responses to food odors.
Read full abstract