Choline is an essential nutrient required for proper cell functioning. Due to its status as a precursor to acetylcholine, an important neurotransmitter connected to cognition and neuromuscular function, maintaining or enhancing choline levels is of interest. Supplementation with alpha-glycerylphosphorycholine (A-GPC) can maintain choline levels, but its ability to offer support towards cognition remains an area of ongoing research. Using a randomized, double-blind, placebo-controlled, crossover approach, 20 resistance-trained males (31.3 ± 11.0 years, 178.6 ± 7.3 cm, 84.6 ± 11.4 kg, 15.4 ± 5.6% body fat) consumed either a placebo (PL), 630 mg A-GPC (HD), or 315 mg (LD) A-GPC (GeniusPure®, NNB Nutrition, Nanjing, China). After resting hemodynamic assessments, participants took their assigned dose and had cognitive assessments (Stroop, N-Back, and Flanker), visual analog scales, and hemodynamics evaluated 60 min after ingestion. All participants then warmed up and completed vertical jumps and bench press throws before completing a bout of lower-body resistance exercise (6 × 10 repetitions using the Smith squat at a load of 70% 1RM). Venous blood was collected 5, 15, 30, and 60 min after completion of the squat protocol to evaluate changes in growth hormones, and follow-up visual analog scales and cognitive measurements were evaluated 30 min after completing the exercise bout. When compared to PL, changes in Stroop total score were statistically greater after HD (13.0 ± 8.2 vs. 5.2 ± 9.0, p = 0.013, d = 0.61) and LD (10.8 ± 7.7 vs. 5.2 ± 9.0, p = 0.046, d = 0.48) administration, in addition to significantly faster times to complete the Stroop test in the HD group when compared to PL (-0.12 ± 0.09 s vs. -0.05 ± 0.09 s, p = 0.021, d = 0.56). No significant differences between groups were found for the Flanker and N-Back assessments, while a tendency was observed for HD to have faster reaction times when compared to PL during the Flanker test. No group differences were realized for visual analog scales, physical performance, or growth hormone. Statistically significant changes in heart rate and blood pressure were observed in all groups, with all recorded values aligning with clinically accepted normative values. HD and LD A-GPC supplementation significantly increased cognitive performance in a group of young, healthy males as measured by changes in the Stroop Total Score and completion time of the Stroop test. These results offer unique insight into the potential for A-GPC to acutely increase cognition in a group of young, healthy males. While previous research has indicated potential for A-GPC to acutely improve cognition in clinical populations, extending these outcomes to healthy individuals can be potentially meaningful for a wide variety of populations such as athletes, race car drivers, military operators, and other non-athletic populations who desire and have a need to improve their mental performance. This study was retrospectively registered as NCT06690619 on clinicaltrials.gov.
Read full abstract