Abstract

There is an ongoing search for a reliable and continuous method of noninvasive blood pressure (BP) tracking. In this study, we investigate the feasibility of utilizing seismocardiogram (SCG) signals, i.e., chest motion caused by cardiac activity, for this purpose. This research is novel in examining the temporal relationship between the SCG-measured isovolumic moment and the electrocardiogram (PEPIM). Additionally, we compare these results with the traditionally measured pre-ejection period with the aortic opening marked as an endpoint (PEPAO). The accuracy of the BP estimation was evaluated beat to beat against invasively measured arterial BP. Data were collected on separate days as eighteen sets from nine subjects undergoing a medical procedure with anesthesia. Results for PEPIM showed a correlation of 0.67 ± 0.18 (p < 0.001), 0.66 ± 0.17 (p < 0.001), and 0.67 ± 0.17 (p < 0.001) when compared to systolic BP, diastolic BP, and mean arterial pressure (MAP), respectively. Corresponding results for PEPAO were equal to 0.61 ± 0.22 (p < 0.001), 0.61 ± 0.21 (p < 0.001), and 0.62 ± 0.22 (p < 0.001). Values of PEPIM were used to estimate MAP using two first-degree models, the linear regression model (achieved RMSE of 11.7 ± 4.0 mmHg) and extended model with HR (RMSE of 10.8 ± 4.2 mmHg), and two corresponding second-degree models (RMSE of 10.8 ± 3.7 mmHg and RMSE of 8.5 ± 3.4 mmHg for second-degree polynomial and second-degree extended, respectively). In the intrasubject testing of the second-degree model extended with HR based on PEPIM values, the mean error of MAP estimation in three follow-up measurements was in the range of 7.5 to 10.5 mmHg, without recalibration. This study demonstrates the method’s potential for further research, particularly given that both proximal and distal pulses are measured in close proximity to the heart and cardiac output. This positioning may enhance the method’s capacity to more accurately reflect central blood pressure compared to peripheral measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.