Baicalin (BC) is a flavonoid reported to have various pharmacological activities, including antioxidant, anti-cancer, anti-inflammatory, anti-allergy, immune regulation, and anti-diabetic. This study examines the probable mechanism for gestational diabetes mellitus (GDM) brought on by streptozotocin (STZ) and the impact of BC on fetal development via AGEs (advanced serum glycation end products) and RAGE (the role of advanced glycation end products). STZ has been used in the current experimental study to induce diabetes mellitus in pregnant animals (gestational diabetes mellitus). GDM pregnant animals were separated into five groups and were treated with BC in a dose-dependent pattern for 19days. At the end of the experiment, the fetus and blood samples were drawn from all the pregnant rats to assess the biochemical parameter as well as AGE-RAGE. Administration of BC at varying doses leads to enhancement in the weight of the fetus body and placenta while gestational diabetic pregnant animals induced by STZ had a lower weight of the fetus body and placenta. The dose-dependent pattern of BC also enhanced fasting insulin (FINS), high-density lipoprotein (HDL), serum insulin, and hepatic glycogen. It also significantly enhanced the content of the antioxidant profile and pro-inflammatory cytokines and modulated the gene expression (VCAM- 1, p65, EGFR, MCP-1, 1NOX2, and RAGE) in various tissues in gestational diabetes mellitus pregnant rats. Baicalin demonstrated the potential impact on the embryo's development via the AGE-RAGE signaling pathway in STZ-induced GDM pregnant animals.
Read full abstract