It has been suggested that rapid single flux quantum (RSFQ) devices could be used as the classical interface of superconducting qubit systems. One problem is that the interface acts as a dissipative environment for a qubit. Recently, ways to modify the RSFQ damping to reduce the dissipation have been introduced. One of the solutions is to damp the Josephson junctions by a frequency-dependent linear circuit instead of the plain resistor. The approach has previously been experimentally tested with a simple SFQ comparator. In this paper we perform experiments with a full RSFQ circuit, and thus conclude that in terms of stable operation the approach is applicable to scalable RSFQ circuits. Realization and optimization issues are also discussed.
Read full abstract