Abstract

We describe the properties of flux quantum circuitry employing the relatively young technology of multilayer Josephson junctions with n superconductor-insulator (SI) layers. Multilayer junctions can be employed as both passive and active devices to increase circuit integration density, allow for new logic/voltage thresholds and higher impedances, and improve thermal noise stability. We present the results from numerical simulations of a conventional RSFQ circuit and two novel circuits with multilayer junction designs. Neural circuitry is a focus of our novel multilayer designs. We also discuss layout and fabrication issues, considering the recent progress in the fabrication of Nb multilayer junctions with AlN tunnel barriers, which exhibit intrinsic overdamping at the level of each SI layer. Included in this discussion is a long term assessment of a multilayer approach in view of deep sub-micron and high T/sub c/ technologies.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.