We report on the development of a new class of protein microarrays based on the co-immobilization of multiple components within a single pin-printed sol–gel array element. In the first case, the microarraying of a coupled two enzyme reaction involving glucose oxidase and horseradish peroxidase along with the fluorogenic reagent Amplex Red is demonstrated to allow “reagentless” fluorimetric detection of glucose. The second system involved the detection of urea using co-immobilized urease and fluorescein dextran, which works on the basis of a pH induced change in fluorescein emission intensity upon production of ammonium carbonate owing to hydrolysis of urea. In both the cases, it is demonstrated that the changes in intensity from the array are time-dependent, consistent with the enzyme catalyzed reaction, showing that such arrays can be used for kinetic studies. The rate of intensity change was also found to be dependent on the concentration of analyte added to the array, showing that such arrays could be useful for quantitative multianalyte biosensing. Inhibition of urease by the competitive inhibitor thiourea is also demonstrated on a microarray, demonstrating that sol–gel-based microarrays may find use in high-throughput drug-screening applications.
Read full abstract