Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg–1.5Zn–0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF2 and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450–600 μm) and interconnected pores (150–200 μm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF2 coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.Graphical
Read full abstract