Abstract

The calcium substitution for magnesium on fluorapatite is attractive because this element is a natural substitute in biological apatites. There are several published stoichiometries for calcium substituted by magnesium fluorapatites and most works point out that the formation and fixation of biomimetic Ca-P coatings in Ringer’s solution were strongly related to Mg2+ content and furthermore the Mg replacement improves the bioactivity of apatite. In the present study, fluorapatite (FA) and fluorapatite substituted with 6% and 7% of magnesium were obtained by deposition via sol-gel coating on substrates of AISI 316L stainless steel to investigate the effect of magnesium substitution on fluorapatite with not yet investigated stoichiometry. Characterization of coating thickness, chemical composition and crystalline structure was performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The coating adhesion was evaluated using the pull-out test and the corrosion resistance was undertaken using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The electrochemical results showed improvement in the corrosion resistance of magnesium-fluorapatite compared to fluorapatite coated on AISI 316L stainless steel substrates. The improvement corrosion protection and adhesion performance indicate that such magnesium fluorapatites coatings are very interesting candidates as bioactive coatings for implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call