PGE1–lipid interactions were studied in several liposome systems. Data from both circular dichroic (CD) measurements and differential scanning calorimetry (DSC) indicated that PGE1 in the protonated form seeks the less polar environment of the lipid bilayer. CD measurements made on PGE1 in solution showed that the wavelength of maximum absorbance red shifted approximately 8 nm with decreasing solvent polarity. The CD spectrum of liposomal PGE1 prepared in pH 4.5 but not pH 7.2 buffer was also red shifted. There was no red shift in the CD spectrum of PGE1 detected at pH 4.5 in the absence of phospholipid. DSC measurements on DSPC bilayers prepared with 5 mol% PGE1 at pH 4.5 but not pH 7.2 revealed an almost complete loss of the pre-transition as well as broadening of the main phase transition. The amount of 3H-PGE1 initially associated with EPC, POPC or DSPC liposomes was determined using size exclusion filters and centrifugation. This amount was found to be dependent on the pH of the buffer (pH 4.5≫pH 7.2) and fluidity of the bilayer (EPC=POPC>DSPC), but independent of the lamellarity of the liposome. In all cases, addition of cholesterol reduced the amount of PGE1 associated with the liposome. The time-dependent release of PGE1 from the liposomes was determined by rapidly diluting the sample 100-fold into pH 7.2 buffer. Lipid saturation was a key factor influencing this release. Gel-phase liposomes of DSPC showed a rapid initial release ( t 1/2<2 min) of PGE1, corresponding to the amount in the outer monolayer, followed by a very slow, almost negligible release of the remaining PGE1. A rapid initial release also occurred in fluid-phase membranes, followed by a more gradual release of the remaining PGE1 over several hours. This release rate could be slowed by increasing the lamellarity of these liposomes, or adding cholesterol to decrease the fluidity of the membrane.