Abstract

The negatively charged fluorophore 3-[ p-(6-phenyl)-1,3,5-hexatrienyl]phenylpropionic acid (PA-DPH) was characterized by comparison with its parent compound DPH, and with cationic trimethylammonium-DPH (TMA-DPH). The molar absorption coefficient of PA-DPH (60 000 cm −1 · mol −1) as well as its quantum yield (0.7) and fluorescence lifetime (5 ns) in fluid phase membranes are intermediate between DPH and TMA-DPH. Steady-state fluorescence polarization studies show that PA-DPH detects the phase transition of both neutral and anionic bilayers. In fluid phase membranes the absolute values of PA-DPH polarization are considerably higher than DPH and somewhat lower than TMA-DPH. The results suggest that like TMA-DPH, PA-DPH is anchored to the surface of the membrane by its charge, but that it is probing a region somewhat deeper along the bilayer normal. PA-DPH binds to rat hepatic fatty acid binding protein (hFABP) and bovine serum albumin at PA-DPH/protein molar ratios of 1.5:1 and at least 6:1, respectively. Native oleic acid competes with PA-DPH for binding to both proteins, suggesting that the two ligands compete for similar binding sites. The affinity of PA-DPH for hFABP is similar to that of oleic acid. Thus, PA-DPH should be useful both as an anionic fluorescent membrane probe and a long-chain free fatty acid analogue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call