We report the microstructure, optical and electrical properties of Al1.5Ga0.5O3 thin films implanted by 180 keV Fe and Co ions. The X-ray diffraction pattern confirmed rhombohedral structure with R 3‾ c space group for pristine and Fe-implanted films. The Co-implanted films showed amorphous structure. SRIM simulations suggested oxygen vacancy in the films. The atomic force microscopy confirmed the formation of spherical-shaped particles (17–20 nm) in Co-implanted GaAlO_Si_550 films. The RMS roughness of the GaAlO_Si_550 films increased from 19 nm to 25 nm at higher Co-ion implantation fluences. X-ray photoelectron spectroscopy supported the formation of oxygen vacancy and non-stoichiometry at surface of the films. Electrical conductivity of the films enhanced up to 10−2- 10−3 S/m by metallic Fe- and Co ion implantation. Optical band gap was found at ∼3.85 eV for GaAlO_Al_550 and ∼4.04 eV for GaAlO_Si_550 pristine films. Optical band gap was stabilized in the range of 3.75–4.52 eV for Fe- and Co-implanted films, which can be useful for opto-electronic device applications in the UV and deep blue region.