Abstract
ZnO nanopillars were implanted with Au-400 keV and Ag-252 keV ions with ion fluences from 1 × 1015 cm−2 to 1 × 1016 cm−2. We compared ZnO nanopillars solely implanted with Au-ions and dually-implanted with Au and Ag-ions. Rutherford Back-Scattering spectrometry (RBS) confirmed Ag and Au embedded in ZnO nanopillar layers in a reasonable agreement with theoretical calculations. A decreasing thickness of the ZnO nanopillar layer was evidenced with the increasing ion implantation fluences. Spectroscopic Ellipsometry (SE) showed a decrease of refractive index in the nanopillar parts with embedded Au, Ag-ions. XRD discovered vertical domain size decreasing with the proceeding radiation damage accumulated in ZnO nanopillars which effect was preferably ascribed to Au-ions. SE and diffuse reflectance spectroscopy (DRS) showed optical activity of the created nanoparticles at wavelength range 500 – 600 nm and 430 – 700 nm for the Au-implanted and Au, Ag-implanted ZnO nanopillars, respectively. Photoluminescence (PL) features linked to ZnO deep level emission appear substantially enhanced due to plasmonic interaction with metal nanoparticles created by Ag, Au-implantation. Photocatalytic activity seems to be more influenced by the nanoparticles presented in the layer rather than the surface morphology. Dual implantation with Ag, Au-ions enhanced optical activity to a larger extent without significant morphology deterioration as compared to the solely Au-ion implanted nanopillars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.