Mixing and a nonlinear bimolecular chemical reaction (reactant A + reactant B → product; reaction rate r = κc1c2) in laminar shear flow are investigated. It is found that asymptotically the dominant balance between the rates of production and dissipation of the mean-squared concentration fluctuations \((\sigma_{c_1 }^2 ,\sigma_{c_2 }^2)\) and cross-covariance of concentration fluctuations \((\overline {c_1 c_2 })\) occurs under nonreactive and reactive conditions. Longitudinal dispersion of the cross-sectional averages (C1, C2), and variances and the cross-covariance of reactant concentrations can be asymptotically quantified by the classic Taylor dispersion coefficient (D) even under reactive conditions. The characteristic time-scale (τ) over which molecular diffusion dissipates concentration variance and the cross-covariance of reactant concentrations is also shown to be the same under nonreactive and reactive conditions. A variational estimate of τ is shown to be close to the values inferred from detailed numerical simulation. The production-dissipation balance implies that the cross-sectional averaged reaction rate follows \(\overline r =\kappa_{eff} C_1 C_2 \) and \(\kappa _{eff} \approx \kappa \left[ {1+2D\tau \left( {{\partial \ln C_1 } \mathord{\left/ {\vphantom {{\partial \ln C_1 } {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)\left( {{\partial \ln C_2 } \mathord{\left/ {\vphantom {{\partial \ln C_2 } {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)} \right]\). The effective reaction rate parameter (κeff) is higher than that of well-mixed batch test reaction rate constant (κ) for initially overlapping species and κeff is smaller than κ for initially non-overlapping species.
Read full abstract