It is well established that streamflow regimes evolve over decadal time scales (i.e., low frequency) leading to long term shifts in distributions. Similar low frequency variations have also been documented in streamflow predictability. Here we explore connections between streamflow distribution attributes and predictability regimes in the Upper Colorado River Basin. We employ nonlinear dynamical time series analysis methods on streamflow timeseries covering the period 762 – 2019 for six locations in the basin. First, a wavelet spectral analysis is performed to obtain the quasi-periodic ‘signal’ of the streamflow. The wavelet analysis also provides the temporal variability of the variance of the signal time series. The signal time series is embedded in a D-dimensional space with appropriate lag to reconstruct the phase space of the dynamics – i.e. the attractor. Overall predictability is assessed by quantifying the average divergence trajectories in the phase space using Global Lyapunov Exponents and the temporal variability of predictability via the Local Lyapunov Exponents. Results show clear oscillations in streamflow predictability with periods of both high and low predictability occurring throughout the study period at all gauges. Comparing predictability timeseries across the stream gauges we find that general consistency in high and low predictability periods, although they do not perfectly align temporally. In general, higher (lower) predictability periods are characterized by lower (higher) streamflow variance. While there is not a clear relationship between streamflow magnitude and predictability in general, modern high predictability epochs are characterized by a slightly greater likelihood of dry years and lower likelihood of wet years than other epochs. These findings indicate the potential for statistically significant differences in streamflow signatures between high and low predictability periods. Exploring these fundings further with potential connections to large-scale climate can be helpful in exploiting them for skillful short and medium term flow projections.
Read full abstract