Background: Abdominal aortic aneurysms (AAAs) present a formidable public health concern due to their propensity for localized, anomalous expansion of the abdominal aorta. These insidious dilations, often in their early stages, mask the life-threatening potential for rupture, which carries a grave prognosis. Understanding the hemodynamic intricacies governing AAAs is paramount for predicting aneurysmal growth and the imminent risk of rupture. Objective: Our extensive investigation delves into this complex hemodynamic environment intrinsic to AAAs, utilizing comprehensive numerical analyses of the physiological pulsatile blood flow and realistic boundary conditions to explore the multifaceted dynamics influencing aneurysm rupture risk. Our study introduces novel elements by integrating these parameters into the overall context of aneurysm pathophysiology, thus advancing our understanding of the intricate mechanics governing their evolution and rupture. Methods: Conservation of mass and momentum equations are used to model the blood flow in an AAAs, and these equations are solved using a finite volume-based ANSYS Fluent solver. Resistance pressure outlets following a three-element Windkessel model were imposed at each outlet to accurately model the blood flow and the AAAs’ shear stress. Results: Our results uncover elevated blood flow velocities within an aneurysm, suggesting an augmented risk of future rupture due to increased stress in the aneurysm wall. During the systole phase, high wall shear stress (WSS) was observed, typically associated with a lower risk of rupture, while a low oscillatory shear index (OSI) was noted, correlating with a decreased risk of aneurysm expansion. Conversely, during the diastole phase, low WSS and a high OSI were identified, potentially weakening the aneurysm wall, thereby promoting expansion and rupture. Conclusion: Our study underscores the indispensable role of computational fluid dynamic (CFD) techniques in the diagnostic, therapeutic, and monitoring realms of AAAs. This body of research significantly advances our understanding of aneurysm pathophysiology, thus offering pivotal insights into the intricate mechanics underpinning their progression and rupture, informing clinical interventions and enhancing patient care.