Abstract

This study investigates the steady flow resulting from dewatering by a partially penetrating well in a confined aquifer with a cut-off barrier. By considering flow in both horizontal and vertical directions and incorporating the barrier and pumping well as flow boundary conditions, separate mathematical models are established for the inside and outside of the cut-off barrier. The interaction between these zones is ensured through continuous conditions along the opening of the two zones. A semi-analytical solution is derived for the problem using the finite Fourier cosine transform and boundary transformation methods. The effectiveness of the method is verified by comparing it with the finite element numerical results and pumping test data respectively. Based on the proposed solutions, we proceed to analyze the influence of some relevant factors: the extent to which the cut-off wall is embedded within the confined aquifer, the depth of the partially penetrating well, and the distance to the lateral head boundary. Results indicate that a greater depth of the cut-off wall leads to a reduced pumping rate requirement for achieving a desired drawdown of the confined water level within the excavation. According to the presented solution, placing pumping wells near the top of the confined aquifer in excavation dewatering projects can facilitate a faster reduction of the confined water head at the excavation bottom. Additionally, proximity of lateral head boundary could significantly impact dewatering, with closer boundaries reducing dewatering effectiveness due to improved aquifer recharge. Finally, the use of the Fourier method showcases impressive convergence properties in the approach presented in this study. The computed results maintain a high level of approximation quality, even with extremely coarse discretization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call