The reactions of the flavin semiquinone generated by laser-induced stepwise two-photon excitation of reduced flavin have been studied previously (El Hanine-Lmoumene C & Lindqvist L. (1997) Photochem Photobiol 66, 591-595) using time-resolved spectroscopy. In the present work, we have used the same experimental procedure to study the flavin semiquinone in rat kidney long-chain hydroxy acid oxidase and in the flavodehydrogenase domain of flavocytochrome b(2) FDH, two homologous flavoproteins belonging to the family of FMN-dependent L-2-hydroxy acid-oxidizing enzymes. For both proteins, pulsed laser irradiation at 355 nm of the reduced enzyme generated initially the neutral semiquinone, which has rarely been observed previously for these enzymes, and hydrated electron. The radical evolved with time to the anionic semiquinone that is known to be stabilized by these enzymes at physiological pH. The deprotonation kinetics were biphasic, with durations of 1-5 micros and tens of microseconds, respectively. The fast phase rate increased with pH and Tris buffer concentration. However, this increase was about 10-fold less pronounced than that reported for the neutral semiquinone free in aqueous solution. pK(a) values close to that of the free flavin semiquinone were obtained from the transient protolytic equilibrium at the end of the fast phase. The second slow deprotonation phase may reflect a conformational relaxation in the flavoprotein, from the fully reduced to the semiquinone state. The anionic semiquinone is known to be an intermediate in the flavocytochrome b(2) catalytic cycle. In light of published kinetic studies, our results indicate that deprotonation of the flavin radical is not rate-limiting for the intramolecular electron transfer processes in this protein.
Read full abstract