Abstract
The Na(+)-pumping NADH-ubiquinone oxidoreductase has six polypeptide subunits (NqrA-F) and a number of redox cofactors, including a noncovalently bound FAD and a 2Fe-2S center in subunit F, covalently bound FMNs in subunits B and C, and a noncovalently bound riboflavin in an undisclosed location. The FMN cofactors in subunits B and C are bound to threonine residues by phosphoester linkages. A neutral flavin-semiquinone radical is observed in the oxidized enzyme, whereas an anionic flavin-semiquinone has been reported in the reduced enzyme. For this work, we have altered the binding ligands of the FMNs in subunits B and C by replacing the threonine ligands with other amino acids, and we studied the resulting mutants by EPR and electron nuclear double resonance spectroscopy. We conclude that the sodium-translocating NADH:quinone oxidoreductase forms three spectroscopically distinct flavin radicals as follows: 1) a neutral radical in the oxidized enzyme, which is observed in all of the mutants and most likely arises from the riboflavin; 2) an anionic radical observed in the fully reduced enzyme, which is present in wild type, and the NqrC-T225Y mutant but not the NqrB-T236Y mutant; 3) a second anionic radical, seen primarily under weakly reducing conditions, which is present in wild type, and the NqrB-T236Y mutant but not the NqrC-T225Y mutant. Thus, we can tentatively assign the first anionic radical to the FMN in subunit B and the second to the FMN in subunit C. The second anionic radical has not been reported previously. In electron nuclear double resonance spectra, it exhibits a larger line width and larger 8alpha-methyl proton splittings, compared with the first anionic radical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.