The study of complex process models often encounters challenges in terms of comprehensibility. This paper explores using modularization as a strategy to mitigate such challenges, notably the reduction in complexity. Previous research has delved into the comprehensibility of modularized process models, yet an unresolved question about the cognitive factors at play during their comprehension still needs to be answered. Addressing the latter, the paper presents findings from an innovative study combining eye-tracking and concurrent think-aloud techniques involving 25 participants. The study aimed to comprehend how individuals comprehend process models when presented in three different modular formats: flattened process models, models with grouped elements, and models with subprocesses. The results shed light on varying comprehension strategies employed by participants when navigating through these modularized process models. The paper concludes by suggesting avenues for future research guided by these insights.
Read full abstract