Abstract The goal of this work was the synthesis of novel flame-retarded polyurethane rigid foam with a high percentage of castor oil phosphate flame-retarded polyol (COFPL) derived from renewable castor oil. Rigid flame-retarded polyurethane foams (PUFs) filled with expandable graphite (EG) and diethyl phosphate (TEP) were fabricated by cast molding. Castor oil phosphate flame-retarded polyol was derived by glycerolysis castor oil (GCO), H2O2, diethyl phosphate and catalyst via a three-step synthesis. Mechanical property, morphological characterization, limiting oxygen index (LOI) and thermostability analysis of PUFs were assessed by universal tester, scanning electron microscopy (SEM), oxygen index testing apparatus, cone calorimeter and thermogravimetric analysis (TGA). It has been shown that although the content of P element is only about 3%, the fire retardant incorporated in the castor oil molecule chain increased thermal stability and LOI value of polyurethane foam can reach to 24.3% without any other flame retardant. An increase in flame retardant was accompanied by an increase in EG, TEP and the cooperation of the two. Polyurethane foams synthesized from castor oil phosphate flame-retarded polyol showed higher flame retardancy than that synthesized from GCO. The EG, in addition to the castor oil phosphate, provided excellent flame retardancy. This castor oil phosphate flame-retarded polyol with diethyl phosphate as plasticizer avoided foam destroy by EG, thus improving the mechanical properties. The flame retardancy determined with two different flame-retarded systems COFPL/EG and EG/COFPL/TEP flame-retarded systems revealed increased flame retardancy in polyurethane foams, indicating EG/COFPL or EG/COFPL/TEP systems have a synergistic effect as a common flame retardant in castor oil-based PUFs. This EG/COFPL PUF exhibited a large reduction of peak of heat release rate (PHRR) compared to EG/GCO PUF. The SEM results showed that the incorporation of COFPL and EG allowed the formation of a cohesive and dense char layer, which inhibited the transfer of heat and combustible gas and thus increased the thermal stability of PUF. The enhancement in flame retardancy will expand the application range of COFPL-based polyurethane foam materials.
Read full abstract