A strong interest in highly-efficient, small-scale propeller configurations can be recognized, especially due to the currently growing number of and usage possibilities for unmanned aerial vehicles (UAVs). Although a variety of different propulsion concepts already exist on the market or are discussed in the literature, there is still a demand for a systematic investigation to compare such configurations, in particular, small-scale propellers with a fixed pitch, which are analyzed in this work. Therefore, different configurations of small-scale propellers with a fixed pitch are analyzed in this paper. They were operated as isolated single propellers and as ducted propellers in a cylindrical wing. Furthermore, due to their flight envelope, UAVs are likely to operate at highly inclined inflow conditions and even under reverse inflow. These non-axial inflow conditions have a major influence on the flow field around a propeller. In order to investigate this influence, all analyses were performed at a range of inflow angles in relation to the propeller axis from αdisc=0° to 180°.