This paper introduces a novel method for shape and topology optimization based on a generalized approach for evaluating topological derivatives, which are essential for the integration of shape and topology optimization. Traditionally, evaluating these derivatives presents significant mathematical challenges due to the discontinuity introduced by the insertion of a hole within the domain of interest. To overcome this issue, the study employs Helmholtz-type partial differential equations (PDEs) to construct a filtered objective functional. This approach ensures differentiability across the material and void phases and continuity over the fixed design domain while maintaining the same evaluation value as the original objective functional. By considering differentiability, continuity conditions, and the relationship between shape and topological derivatives during asymptotic analysis, generalized topological derivatives are obtained through established mathematical procedures. These topological derivatives exhibit a direct correlation with the PDE solutions and demonstrate satisfactory smoothness, thereby facilitating refined shapes in optimization strategies. Furthermore, an effective shape update algorithm is proposed, which directly integrates topological derivatives into structural optimization problems, simplifying their implementation and improving efficiency. Finally, the efficacy of the proposed methodology is demonstrated through its application to various optimal design problems, including stiffness maximization, compliant mechanisms, and eigenfrequency maximization. Verification results further highlight its potential to enhance existing methods for addressing more practical and complex optimization challenges.
Read full abstract