Abstract
This paper introduces a novel method for shape and topology optimization based on a generalized approach for evaluating topological derivatives, which are essential for the integration of shape and topology optimization. Traditionally, evaluating these derivatives presents significant mathematical challenges due to the discontinuity introduced by the insertion of a hole within the domain of interest. To overcome this issue, the study employs Helmholtz-type partial differential equations (PDEs) to construct a filtered objective functional. This approach ensures differentiability across the material and void phases and continuity over the fixed design domain while maintaining the same evaluation value as the original objective functional. By considering differentiability, continuity conditions, and the relationship between shape and topological derivatives during asymptotic analysis, generalized topological derivatives are obtained through established mathematical procedures. These topological derivatives exhibit a direct correlation with the PDE solutions and demonstrate satisfactory smoothness, thereby facilitating refined shapes in optimization strategies. Furthermore, an effective shape update algorithm is proposed, which directly integrates topological derivatives into structural optimization problems, simplifying their implementation and improving efficiency. Finally, the efficacy of the proposed methodology is demonstrated through its application to various optimal design problems, including stiffness maximization, compliant mechanisms, and eigenfrequency maximization. Verification results further highlight its potential to enhance existing methods for addressing more practical and complex optimization challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.