Abstract

In this paper, a topology optimization method is constructed for thermal problems with generic heat transfer boundaries in a fixed design domain that include design-dependent effects. First, the topology optimization method for thermal problems is briefly explained using a homogenization method for the relaxation of the design domain, where a continuous material distribution is assumed, to suppress numerical instabilities and checkerboards. Next, a method is developed for handling heat transfer boundaries between material and void regions that appear in the fixed design domain and move during the optimization process, using the Heaviside function as a function of node-based material density to extract the boundary of the target structure being optimized so that the heat transfer boundary conditions can be set. Shape dependencies concerning heat transfer coefficients are also considered in the topology optimization scheme. The optimization problem is formulated using the concept of total potential energy and an optimization algorithm is constructed using the Finite Element Method and Sequential Linear Programming. Finally, several numerical examples are presented in order to confirm the usefulness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.