Acoustic emission (AE) technology has been widely utilized to monitor the SiC wafer lapping process. The root-mean-square (RMS) of the time-domain eigenvalues of the AE signal has a linear relationship with the material removal rate (MRR). However, the existence of background noise severely reduces signal monitoring accuracy. Noise interference often leads to increased RMS deviation and signal distortion. In the study presented in this manuscript, a frequency threshold noise reduction approach was developed by combining and improving wavelet packet noise reduction and spectral subtraction noise reduction techniques. Three groups of SiC lapping experiments were conducted on a fixed abrasive pad, and the lapping acoustic signals were processed using three different noise reduction approaches: frequency threshold, wavelet packet, and spectral subtraction. The results show that the noise reduction method using the frequency threshold is the most effective, with the best coefficient of determination (R2) for the linear fit of the RMS to the MRR.
Read full abstract