Concerns regarding the primary stability of early adjustable loop button (ALB) devices for cortical fixation of tendon grafts in anterior cruciate ligament reconstruction (ACLR) have led to the development of new implant designs. To evaluate biomechanical stability of recent ALB implants in comparison with a continuous loop button (CLB) device. Controlled laboratory study. ACLR was performed in a porcine model (n = 40) using 2-strand porcine flexor tendons with a diameter of 8 mm. Three ALB devices (Infinity Button [ALB1 group]; Tightrope II RT [ALB2 group]; A-TACK [ALB3 group]) and 1 CLB device (FlippTack with polyethylene suture) were used for cortical tendon graft fixation. Cyclic loading (1000 cycles up to 250 N) with complete unloading were applied to the free end of the tendon graft using a uniaxial testing machine, followed by load to failure. Elongation, stiffness, yield load, and ultimate failure load were recorded and compared between the groups using a Kruskal-Wallis test with post hoc Dunn correction. Elongation after 1000 cycles at 250 N was similar between groups (ALB1, 4.5 ± 0.7 mm; ALB2, 4.8 ± 0.8 mm; ALB3, 4.5 ± 0.6 mm; CLB, 4.5 ± 0.8 mm), as was load to failure (ALB1, 838 ± 109 N; ALB2, 930 ± 89 N; ALB3, 809 ± 103 N; CLB, 842 ± 80 N). Stiffness was significantly higher in the ALB1 group compared with the CLB group (262.3 ± 21.6 vs 229.3 ± 15.1 N/mm; P < .05). No significant difference was found between the 4 groups regarding yield load. Constructs failed either by rupture of the loop, breakage of the button, or rupture of the tendon. The tested third-generation ALB devices for cortical fixation in ACLR withstood cyclic loading with complete unloading without significant differences to a CLB device. The third-generation ALB devices tested in the present study provided biomechanical stability comparable with that of a CLB device. Furthermore, ultimate failure loads of all tested implants exceeded the loads expected to occur in the postoperative period after ACLR.
Read full abstract