Abstract

Bone staples have been shown previously to be a viable modality for cortical tendon graft fixation in ligament knee surgery. However, soft tissue reactions have been reported, making implant removal necessary. Magnesium alloys are a promising material for biodegradable orthopaedic implants, with mechanical properties closely resembling those of human bone. To compare the primary stability of a biodegradable bone staple prototype made from magnesium to bone staples made from metal in the cortical fixation of tendon grafts during knee surgery. Controlled laboratory study. Primary stability of peripheral tendon graft fixation was assessed in a porcine model of medial collateral ligament reconstruction. Two commercially available metal bone staples (Richards fixation staple with spikes [Me1] and spiked ligament staple [Me2]) were compared with a magnesium bone staple prototype for soft tissue fixation. Primary stability was assessed using a uniaxial materials testing machine. Cyclic loading at 50 and 100 N was applied for 500 cycles each, followed by load-to-failure testing. After 500 cycles at 50 N, elongation was 1.5 ± 0.5 mm in the Me1 group, 1.9 ± 0.5 mm in the Me2 group, and 1.8 ± 0.4 mm in the magnesium group. After 1000 cycles of loading (500 cycles at 50 N and 500 at 100 N), elongation was 3.6 ± 0.9 mm in the Me1 group, 3.5 ± 0.6 mm in the Me2 group, and 4.1 ± 1.0 mm in the magnesium group. No significant differences regarding elongation were found between the groups. Load to failure was 352 ± 115 N in the Me1 group, 373 ± 77 N in the Me2 group, and 449 ± 92 N in the magnesium group, with no significant difference between the groups. In this study, the magnesium bone staples provided appropriate time-zero biomechanical primary stability in comparison with metal bone staples and may therefore be a feasible alternative for cortical fixation of tendon grafts in knee surgery. The biodegradability of magnesium bone staples would eliminate the need for later implant removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call