Abstract. New-particle formation from condensable gases is a common atmospheric process that has significant but uncertain effects on aerosol particle number concentrations and aerosol–cloud–climate interactions. Assessing the formation rates of nanometer-sized particles from different vapors is an active field of research within atmospheric sciences, with new data being constantly produced by molecular modeling and experimental studies. Such data can be used in large-scale climate and air quality models through parameterizations or lookup tables. Molecular cluster dynamics modeling, ideally benchmarked against measurements when available for the given precursor vapors, provides a straightforward means to calculate high-resolution formation rate data over wide ranges of atmospheric conditions. Ideally, the incorporation of such data should be easy, efficient and flexible in the sense that same tools can be conveniently applied for different data sets in which the formation rate depends on different parameters. In this work, we present a tool to generate and interpolate lookup tables of formation rates for user-defined input parameters. The table generator primarily applies cluster dynamics modeling to calculate formation rates from an input quantum chemistry data set defined by the user, but the interpolator may also be used for tables generated by other models or data sources. The interpolation routine uses a multivariate interpolation algorithm, which is applicable to different numbers of independent parameters, and gives fast and accurate results with typical interpolation errors of up to a few percent. These routines facilitate the implementation and testing of different aerosol formation rate predictions in large-scale models, allowing the straightforward inclusion of new or updated data without the need to apply separate parameterizations or routines for different data sets that involve different chemical compounds or other parameters.